Antiaging trial using young blood stirs concerns

Company plans to charge volunteers $8000 each for plasma transfusions from young donors

By Jocelyn Kaiser

It was one of the most mind-bending scientific reports in 2014: Injecting old mice with the plasma portion of blood from young mice seemed to improve the elderly rodents’ memory and ability to learn. Inspired by such findings, a startup company has now launched the first clinical trial in the United States to test the antiaging benefits of young blood in relatively healthy people. But there’s a big caveat: It’s a pay-to-participate trial, a type that has raised ethical concerns, most recently in the stem cell field.

The firm’s co-founder and trial principal investigator is a 31-year-old physician named Jesse Karmazin. His company, Ambrosia, in Monterey, California, plans to charge participants $8000 for lab tests and a one-time treatment with young plasma. Volunteers don’t have to be sick or even particularly aged—the trial is open to anyone 35 and older. Karmazin notes that the study passed ethical review and argues that it’s not that unusual to charge people to participate in clinical trials.

But for some ethicists and researchers, the trial raises red flags, both for its cost to participants and for a design that they contend is unlikely to deliver much science. “There’s just no clinical evidence [that the treatment will be beneficial] and you’re basically abusing people’s trust and the public excitement around this,” says neuroscientist Tony Wyss-Coray of Stanford University in Palo Alto, California, who led the 2014 young plasma study in mice.

Decades ago, so-called parabiosis studies, in which the circulation of old and young animals was connected, suggested that young blood can rejuvenate aging mice. A recent revival of the unusual approach has shown beneficial effects on muscle, the heart, brain, and other tissues, and some researchers are scrutinizing young blood for specific factors that explain these observations. The 2014 study, however, suggested that repeated injections of plasma from young animals were an easy alternative to parabiosis.

Wyss-Coray has since started a company, Alkahest, that, with Stanford, has launched a study of young plasma in 18 people with Alzheimer’s disease, evaluating its safety and monitoring whether the treatment relieves any cognitive problems or other symptoms. The company covers the participants’ costs. Wyss-Coray expects results by the end of this year. (Another trial at a research hospital in South Korea is examining whether cord blood or plasma can prevent frailty in the elderly.)

In Ambrosia’s trial, 600 people ages 35 and older would receive plasma from a donor under age 25, according to the description registered on ClinicalTrials.gov, the federal website intended to track human trials and their results. Karmazin says each person will receive roughly 1.5 liters over 2 days. Before the infusions and 1 month after, their blood will be tested for more than 100 biomarkers that may vary with age, from hemoglobin level to inflammation markers. The $8000 fee—not mentioned on ClinicalTrials.gov—will cover costs such as plasma from a blood bank, lab tests, the ethics review, insurance, and an administrative fee, Karmazin says. “It adds up fairly quickly.”

Karmazin became interested in aging as an undergraduate. In medical school at Stanford, where he rotated through labs focused on stem cells and aging, he took note
of the young plasma mouse study and other parabiosis research. While at Stanford, he says, he and colleagues began combing through hospital and blood bank donor records and found a preliminary association between transfusions of young blood and shorter hospital stays and lower mortality. Karmazin was also intrigued by the story of a Russian physician named Alexander Bogdanov who in the 1920s gave himself infusions of young human blood that he claimed boosted his energy level and bestowed a more youthful appearance. There is “overwhelming data” suggesting that young plasma will be beneficial to people, Karmazin says.

Last year, he co-founded a company called xVitality Sciences that aimed to offer plasma treatments at clinics overseas. The venture didn’t pan out—Karmazin left, and the company is now apparently defunct. Karmazin then started Ambrosia with Craig Wright, a former chief scientific officer at a vaccine company, who now runs a clinic in Monterey. Ambrosia’s study, which was reviewed by a commercial ethics board used by some for-profit stem cell clinics, doesn’t need approval by the U.S. Food and Drug Administration, the pair says, because plasma transfusions are a well-established, standard treatment. Karmazin says he and Wright have now heard from about 20 prospective participants and have enrolled three, all elderly. Wright will likely transfuse plasma into the first person in late August.

To bioethicist Leigh Turner of the University of Minnesota, Twin Cities, the study brings to mind a growing number of scientifically dubious trials registered on ClinicalTrials.gov by private for-profit stem cell clinics. A trial’s presence in the database confers “undeserved legitimacy,” he says.

The scientific design of the trial is drawing concerns as well. “I don’t see how it will be in any way informative or convincing,” says aging biologist Matt Kaeberlein of the University of Washington, Seattle. The participants won’t necessarily be elderly, making it hard to see any effects, and there are no well-accepted biomarkers of aging in blood, he says. “If you’re interested in science,” Wyss-Coray adds, why doesn’t such a large trial include a placebo arm? Karmazin says he can’t expect people to pay knowing they may get a placebo. With physiological measurements taken before and after treatment, each person will serve as their own control, he explains.

Karmazin says he’s filling a void, suggesting that most companies wouldn’t be interested in developing human plasma as an antiaging treatment. “It’s this extremely abundant therapeutic that’s just sitting in blood banks,” he insists.

U.S. RESEARCH MANAGEMENT

NSF tries two-step review, drawing praise—and darts

Brief preliminary proposals can’t do justice to innovative research, scientists complain

By Jeffrey Mervis

As if getting a grant weren’t hard enough already, the National Science Foundation (NSF) now requires thousands of conservation and environmental biologists to survive two rounds of peer review. The change, part of an experiment aimed at easing the strain on agency staff and outside reviewers, includes a first step in which three-quarters of applications are rejected.

NSF says that the two-stage process, which it launched 4 years ago as a pilot project in two divisions within its biology directorate, has resulted in a more manageable workload and fuller consideration of the highest quality proposals. Some scientists, however, aren’t happy about the new procedures. They warn that the changes, notably a dramatically shorter initial application and only one chance a year to file applications rather than the previous two deadlines, could result in NSF funding less innovative research.

“You run out of room to describe anything that may be controversial or a little edgy,” says Peter Wainwright, president of the Society for Integrative and Comparative Biology and a professor at the University of California, Davis. “I suspect there are types of projects that don’t get to the full proposal stage because it’s too hard to write them up in the allowable space. It’s a whole new ballgame.”

Last month, a congressional watchdog agency singled out the NSF project for praise and urged other major research agencies to be more aggressive in streamlining procedures that affect academic research. The study, released 22 July by the Government Accountability Office (GAO), was prompted by mounting concern that the U.S. government’s system for funding academic science is being stretched to the breaking point.

One reason is that scientists, with money tight, are submitting more grant applications. That creates more work for their universities, for the agencies that manage the grantsmaking process, and for the scientists who serve as reviewers. Ironically, the budget squeeze has also contributed to increased federal oversight to ensure those scarce dollars aren’t being wasted.

The GAO report, which surveys a variety of approaches to the problem at four major research agencies, makes clear there are no simple solutions. And NSF’s pilot project may seem counterintuitive: How could adding a second round of review actually reduce the burden on program officers and reviewers?

The answer lies in what NSF officials call binding preliminary proposals. Starting in 2012, scientists applying to core programs in the divisions of environmental biology (DEB) and integrative organismal systems could

Shaking up the system

Applications rose and overall success rates dropped after the National Science Foundation’s division of integrative and organismal systems required preliminary proposals. Applications that reached the full-proposal round faced better odds than in the past.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of preliminary proposals</td>
<td>1824</td>
<td>1963</td>
<td>1973</td>
<td>1996</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percentage invited to submit full proposal</td>
<td>30%</td>
<td>22%</td>
<td>23%</td>
<td>24%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of full proposals</td>
<td>1364</td>
<td>1498</td>
<td>1379</td>
<td>1351</td>
<td>532</td>
<td>497</td>
<td>446</td>
<td>441</td>
</tr>
<tr>
<td>Number of awards</td>
<td>255</td>
<td>296</td>
<td>193</td>
<td>250</td>
<td>158</td>
<td>163</td>
<td>156</td>
<td>150</td>
</tr>
<tr>
<td>Percentage of full proposals funded</td>
<td>30%</td>
<td>33%</td>
<td>35%</td>
<td>34%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall success rate</td>
<td>19%</td>
<td>20%</td>
<td>14%</td>
<td>19%</td>
<td>9%</td>
<td>8%</td>
<td>8%</td>
<td>8%</td>
</tr>
</tbody>
</table>
Antiaging trial using young blood stirs concerns
Jocelyn Kaiser

Science 353 (6299), 527-528.
DOI: 10.1126/science.353.6299.527