What Would You Do?

With genetic studies multiplying and sequencing costs plunging, more than a million people worldwide are, sometimes unknowingly, sharing their DNA with hundreds or even thousands of researchers. And it’s slowly dawning on many scientists and ethicists that even if the DNA was offered to study diabetes or heart disease or some other specific condition, it may surrender many other secrets. Is a study participant at a high risk, or even just a higher risk, of breast cancer? Does she have a sex chromosome anomaly or carry a cystic fibrosis mutation that could threaten her offspring?

Whether to divulge results like these, and how, is arguably the most pressing issue in genetics today. It “comes up in every conversation,” says Jean McEwen, a program director at the Ethical, Legal and Social Implications (ELSI) Research Program, which is housed in the U.S. National Human Genome Research Institute (NHGRI) in Bethesda, Maryland, where Biesecker also works. “This issue, which was a few years ago kind of theoretical, is becoming real.”

ELSI is now accepting applications for more than $7.5 million in studies on how to share genetic results with research participants. In December, 28 researchers convened by the U.S. National Heart, Lung and Blood Institute (NHLBI) in Bethesda published a set of “ethical and practical” guidelines for returning such results. Hospitals struggling with the issue are running focus groups and mailing surveys to patients and families, querying them on what they might want to learn, however unexpected, about their or their child’s DNA.

“Do you really want to know that your child is going to get Alzheimer’s disease when they’re 60?” asks Ingrid Holm, a pediatric geneticist and endocrinologist at Children’s Hospital Boston, which is launching a registry designed to return genetic research results. People “say they want everything back,” she continues. “I’m not sure they know what everything means.”

When to share

The landscape in genetic testing has shifted irrevocably just in the past year or so. Until recently, technology and cost limited geneticists to querying very narrow stretches of DNA, or sequencing a relative handful of DNA variants across the genome. But high-powered, next-generation DNA-sequencing machines are quickly mak-
The following scenarios could confront scientists conducting genetic studies. Would you share such findings with a research participant (or his or her parents) if it wasn’t explicitly covered by a consent form? If the shoe were on the other foot, would you want to know these results?
future—and in a handful of cases already have—for now, when something comes up, researchers must ask themselves whether it rises to “a level where you’re going to break that contract,” says Holm. In one case at Boston Children’s, a blood sample from a child in an autism study suggested a fusion of two genes that would mean a still-undiagnosed cancer. A closer look dismissed this possibility, but had the result been accurate, the researchers assumed they would have shared it with the parents. The family of a boy in a research study at Children’s who was found to have Klinefelter’s was not told, however.

Klinefelter’s and other sex chromosome anomalies make researchers especially uneasy, in part because they’re fairly common. If an older man in a genetic study is discovered to have Klinefelter’s, how should one decide whether to divulge that, asks Clayton, who’s aware of such a case right now. If the individual agreed not to get information back, Clayton’s doubtful it should be shared. “What good is going to come out of that?” she asks.

Others have erred on the side of openness. Alan Shuldiner studies the genetics of heart disease and diabetes at the University of Maryland School of Medicine in Baltimore and works with the Old Order Amish of Lancaster, Pennsylvania. Seven years ago he was parsing the DNA of 2000 Amish for anomalies that would mean a still-undiagnosed disease; because it can be treated by diet modifications, there was no question that this finding would be returned, Clayton’s doubtful it should be shared. “What good is going to come out of that?” she asks.

Shuldiner’s story is unusual, because he has nurtured a personal relationship with his research subjects over many years—something of a throwback in an era of massive biobanks and central DNA repositories accessed by hundreds of geneticists. The push to share data among scientists, across institutions and national borders, means that when a volunteer proffers DNA to one researcher, it often becomes accessible to many others who have no connection to the person who donated his DNA. This is especially true for biobanks, DNA collections that allow researchers everywhere to borrow samples. The UK Biobank alone has more than 500,000 of them. If a scientist using a biobank sample chances upon a disease mutation and wants to get back to the donor, where does she turn? DNA and tissue deposited in such banks are usually stripped of identifying information, and the researcher who first collected them may have retired, or moved, or died. That’s one reason Knoppers and Wolf hope biobanks themselves will help coordinate delivery of these findings, something they’re only beginning to contemplate.

“Ethicists sit around a table and talk about” the importance of returning DNA results, “but if you talk to people like myself who have actually helped run biobanks, you can’t imagine how unsuited we are to doing this,” says Green. Biobanks would have to reach out to the hundreds of thousands of people who have already shared DNA samples and inquire whether they might want information back; currently, virtually all biobank consent forms say that genetic results will not be returned. Even if informed consent forms change, the banks might then need to interact with researchers uncertain about what to share with a DNA donor and make decisions, often on a case-by-case basis, before recontacting a participant with a potentially upsetting research finding.

“If we’re really going to commit to taking this on as a part of every major research study, what is that going to do to the research enterprise?” asks ELSI’s McEwen. “We’re becoming almost a clinical feedback center.”

One country may find out the answer to McEwen’s question especially quickly. In 2007, Spain passed a law requiring that the physician in charge of a genetic study share information back on: assumptions to fall back on:
what’s useful to study participants and the feasibility and impact of sharing genetic findings, and assumptions by participants about how they might benefit from the data they receive.

There’s a push now to move beyond guesswork. “I wanted to see what it was really going to take” to return genetic results, says NHGRI’s Biesecker. In 2007, he enrolled the first volunteer in a DNA sequencing study called ClinSeq that now has more than 850 participants. Initially, ClinSeq focused on analyzing 200 to 400 genes that were mostly linked to heart disease, but the plan was always to expand well beyond that when the technology allowed, which Biesecker is now doing. His group is sequencing the exome of every participant to identify DNA behind a host of diseases. With permission from the volunteers, the researchers are then offering to disclose portions of what they find.

It’s a delicate process. “I would call you up and say, ‘Hey, you might remember you signed up for this study a year and a half ago. We have a medically significant result; it is the kind of result that might tell you about your future disposition to develop a disorder,’” says Biesecker. If the participant is interested, the finding is validated and the individual comes in to learn about it, a meeting that normally takes at least an hour.

One thing Biesecker has learned is that generating data is the easy part. He has sequenced the exomes of more than 400 people and communicated results to about 10. Interpreting and validating the findings takes time, and so far Biesecker has focused on just a handful of genetic findings beyond those related to heart disease. They include BRCA mutations and others that dramatically increase cancer risk, or mutations that predispose to late-onset neurological disorders. The middle-aged men and women in ClinSeq can also learn about reversionary mutations they carry; because they are past reproductive age, the information isn’t relevant to them personally but they could share it with their children, now young adults, whose own offspring could be affected by a genetic disease.

Biesecker already sees a problem with expanding ClinSeq’s strategy across an entire population: It’s not sustainable, he says, to spend hours and hours parsing one person’s genome, then bring them in for a 2-hour face-to-face meeting. “The way we do it now doesn’t scale,” he says. “It just doesn’t.”

Farther up the East Coast, at Boston Children’s, Holm is grappling with the same problem. In October 2009, Children’s launched The Gene Partnership project, a DNA registry that has so far enrolled 1000 patients and families for a range of genetic studies. It plans to return many findings related to disease risk, with guidance from an outside group of experts and Children’s families, including 7000 to whom Holm sent surveys last month. Although the project will begin with face-to-face meetings for delivering any news, it anticipates shifting at some point to a Web portal that will notify participants that genetic results are available and offer them a phone call with a genetic counselor to learn more. That risks fomenting confusion about what specific findings mean, because sometimes “the only way” to ensure that people understand “is to go face to face,” says David Miller, a geneticist at Children’s who works with patients well and don’t regret having learned it.

But these examples are very different from what may become a more common scenario: an individual who donated DNA 5 years ago, has forgotten that the possibility of data return was listed in the consent form, and has no idea this information is barreling toward him or her. There’s no easy way to study this. Biesecker has found that most people in ClinSeq have taken the news of a disease gene mutation in stride. Still, one was distressed and has not shared the results with family members. And only a handful of ClinSeq participants have gotten results so far.

Another concern is the impact on the health care system when individuals receive a data dump of genetic information. “If you tell a million people that they’ve got 500 risk factors, and you tell their doctors, ... how does this alter all the surveillance and treatment options” that are available? asks Green. This is a huge concern of Clayton’s and a big reason why she generally opposes sharing genetic findings. “I think it will kill the health care system,” she says.

Holm takes the opposite view, arguing that imparting these findings could actually reduce health care costs because care might become more personalized. And either way, she says, “you can’t say we’re not going to do this” because of a potential cost crunch.

Although some researchers have shared results from their genetic studies with participants, that’s still uncommon; exome sequencing, which will expose many more incidental findings, is just on the cusp of rapid expansion. The Spanish law has generated much discussion but has apparently had little practical impact—yet.

Still, geneticists need to start thinking about what, if anything, they are willing to tell their research subjects—and how they might approach breaking the news. Biesecker, reflecting back on that conversation years ago with the couple whose daughter had missing DNA, remembers that he asked the parents’ permission to invite along the Ph.D. who made the discovery. She joined them for that conversation—and the father’s reaction so disturbed her that she needed counseling afterward to cope with it.

—JENNIFER COUZIN-FRANKEL
What Would You Do?
Jennifer Couzin-Frankel

Science 331 (6018), 662-665.
DOI: 10.1126/science.331.6018.662